Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Интегрирование по частям





Пусть и – дифференцируемые функции. Известно, что дифференциал произведения вычисляется по формуле: . Проинтегрируем данное равенство . Используя свойства интеграла, будем иметь , отсюда

.

Данная формула называется формулой интегрирования по частям. Эта формула применяется чаще всего к интегрированию выражений, которые можно представить в виде произведения двух сомножителей и , причем за принимают такой множитель, от которого можно найти интеграл.

Основные виды интегралов, которые берутся по частям: – многочлен степени (см. таблицу 2).

Таблица 2

I
II
III В данных интегралах за можно принять любую функцию. Интегрируют два раза и приводят подобные интегралы.
IV
V

Пример 10. Найти интеграл .

Решение.

тогда

,

Пример11. Найти интеграл .

Решение.

, , тогда ,

Пример12. Найти интеграл .

Решение.

тогда ,

Получили интеграл такого же вида. Еще раз необходимо применить интегрирование по частям: , , тогда

,

Получили интеграл первоначального вида. Преобразуем

.

Из данного равенства выразим искомый интеграл

,

отсюда

.

Интегралы такого вида называются круговыми.

Пример 13. Найти интеграл .

Решение.

тогда ,

Пример 14. Найти интеграл .

Решение.

тогда ,

.

Некоторые другие виды интегралов также можно находить интегрированием по частям.

С помощью формулы интегрирования по частям можно найти интеграл вида . Рассмотрим данный интеграл

Разобьем на два интеграла Первый интеграл оставим без изменений, а во втором интеграле , , тогда ,

Преобразуем

В результате применения метода интегрирования по частям, получили интеграл, в котором подынтегральная функция имеет степень, меньшую на единицу, чем в исходном интеграле:

. (1)

Данная формула называется рекуррентной формулой. Ее применяют до тех пор, пока не получат табличный интеграл вида .

Пример 15. Найти интеграл .

Решение. Применим к данному интегралу рекуррентную формулу: , .

Еще раз применим рекуррентную формулу:

 







Дата добавления: 2015-10-12; просмотров: 488. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия