Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Корреляционный и спектральный анализ случайных процессов.





Детерминированный процесс новой информации не несёт. Информация заключается в случайном процессе.

- случайная функция.

Если , то - случайный процесс.

Ансамбль реализаций случайного процесса:

 

- сечения случайного процесса.

Случайные процессы описываются вероятностными законами (функции распределения, которые бывают интегральные и дифференциальные).

- одномерный интегральный закон распределения.

- дифференциальный закон (плотность вероятности).

- закон нормировки.

Для полного описания случайного процесса необходим закон:

.

В инженерной практике неудобно пользоваться вероятностными законами, а желательно иметь числовые характеристики, неслучайные характеристики. Очевидно, это должны быть некие осреднённые величины. Их называют моментами (моменты 1-ого, 2-ого и т.д. порядка, смешанные, центральные моменты). Для инженерной практики оказалось достаточным использовать только три такие характеристики: математическое ожидание (среднее значение), дисперсия, корреляционная функция. Кроме того, оказалось плодотворным понятие стационарного случайного процесса. Стационарный случайный процесс – это процесс, у которого моменты первого порядка от времени не зависят (математическое ожидание, дисперсия), а корреляционная функция зависит не от двух аргументов времени, а от расстояния между сечениями, т.е. от разности аргументов.

Математическое ожидание стационарного процесса, получаемая осреднением по множеству реализаций:

(*)

Работать с формулами, подобными (*), т.е. средними, неудобно. Оказалось, что большинство процессов подчиняются эргодической гипотезе, которая означает, что неслучайные характеристики, получаемые осреднением по множеству реализаций, равны подобным характеристикам, получаемым осреднением по времени из одной достаточно длительной реализации.

 

(44)

для стационарных процессов.

(45)

Физический смысл дисперсии: она характеризует меру рассеяния реализации процесса около среднего значения (геометрический смысл) и характеризует мощность этих флуктуаций (колебаний) – физический смысл.

Корреляция – связь, взаимозависимость, поэтому корреляционная функция случайного процесса характеризует степень связи двух сечений случайного процесса: чем больше она, тем легче можно предсказать второе значение по первому базовому. С математической точки зрения, это операция взятия математического ожидания от произведения двух значений случайного процесса:

(46)

Корреляционная функция центрированного процесса:

(47)

по (47)

Примечание: в связи с большим удобством анализа сигналов в частотной области введено понятие спектральной плотности как прямого преобразования Фурье от корреляционной функции:

(48)

Смысл этой спектральной плотности: характеризует распределение по частотам не энергии сигнала, а мощности, или распределение дисперсии:

(49)

Основное свойство корреляционной функции – чётность

 

Если ядро преобразования заменим по формуле Эйлера и подставим в (48) и (49), то вследствие чётности функции интегралы от в симметричных пределах будут равны нулю.

Формулы Винера-Хинчина:

, (50)

. (51)







Дата добавления: 2015-08-12; просмотров: 1758. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия