Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Термодинамические потенциалы сложных систем





 

Термодинамические потенциалы H, F, G были введены для такой простой системы, как газ. Однако все сказанное несложно обобщить на другие физические системы, в том числе на системы со многими степенями свободы. Для этого надо в качестве элементарной работы взять соответствующее выражение и подставить его в основное уравнение термодинамики (29.8). Для закрытых систем со многими степенями свободы уравнение примет вид

 

dU = TdS, (44.1)

 

где xi – обобщенные координаты, а Xi – обобщенные силы.

Если состояние системы определяется внешними параметрами xi и энтропией, то термодинамическим потенциалом является внутренняя энергия U (S, x 1, x 2, …), дифференциал которой выписан выше (см. (44.1)).

Энтальпия, по определению, равна

 

H = U + .

Ее естественные переменные – энтропия и обобщенные силы, а дифференциал равен

 

dH = TdS + .

 

Если независимыми переменными являются внешние параметры xi и температура, то состояние системы полностью описывается свободной энергией

 

F = UT × S.

 

Ее дифференциал

 

dF = – SdT.

 

Наконец, для переменных: температура и обобщенные силы – термодинамическим потенциалом является функция

 

G = F +

с дифференциалом

 

dG = – SdT + .

 

Помимо этих потенциалов существует большое число других подобных функций, которые могут быть построены последовательным применением преобразования Лежандра по переменным x 1, x 2, …, X 1, X 2, ….

В случае открытой системы число частиц является переменным. Изменение числа частиц может происходить в результате фазовых переходов, химических реакций и т. д. Основное уравнение термодинамики (29.8) для открытых систем содержит соответствующее слагаемое

 

dU = TdSpdV + . (44.2)

 

Определения всех других термодинамических потенциалов сохраняются, т. е.

 

H = U + pV, F = UTS, G = HTS.

 

Их дифференциалы равны

 

dH = TdS + Vdp + , dF = – SdTpdV +

 

dG = – SdT + Vdp + (44.3)

 

Для химического потенциала из этих выражений следуют равенства

 

μ i =

 

 

Термодинамические потенциалы – экстенсивные величины. В случае системы из одинаковых частиц это означает, что при изменении массы вещества или числа частиц N в некоторое число раз, во столько же раз изменятся и значения термодинамических потенциалов. Следовательно, зависимость термодинамических потенциалов от числа частиц должна быть такой:

 

U = N × f 1(S / N, V / N), H = N × f 2(S / N, p), F = N × f 3(T, V / N), G = N × f 4(T, p).

 

Отсюда получается, что μ = f 4(T, p), т. е. химический потенциал равен потенциалу Гиббса в расчете на одну частицу, и, значит,

 

G = N × μ. (44.4)

 

Для других потенциалов подобного равенства не существует. Например:

 

μ = (¶ F / ¶ N) T,Vf 3(T, V / N) = F / N.

 

Соотношение (44.4) обобщается на любую смесь веществ. Потенциал Гиббса смеси равен

 

G = . (44.5)

 

В самом деле, при изменении полного числа частиц в α раз изменяются в α раз и число частиц каждого сорта и потенциал Гиббса, т. е.

 

G (T, p, α N 1, α N 2, …) = α (T, p, N 1, N 2, …).

 

Дифференцирование этого равенства по α дает

 

.

 

Если положить α = 1, то получится уравнение Эйлера

 

= G.

 

Замена производных на химические потенциалы приводит к равенству (44.5).

Исключение потенциала G из соотношений (44.3), (44.5) позволяет получить важное в термодинамике уравнение Гиббса–Дюгема

 

SdTVdp + = 0. (44.6)


 







Дата добавления: 2015-08-12; просмотров: 1100. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия