Приклад. Відомо наступні дані про активність виборців у одній із областей на виборах президента України у 1999 р
Відомо наступні дані про активність виборців у одній із областей на виборах президента України у 1999 р., тис. чоловік:
№ терито-ріальної виборчої дільниці
| Кількість виборців, що взяли участь у голосуванні
| З них, не підтримали жодної кандидатури
| № терито-ріальної виборчої дільниці
| Кількість виборців, що взяли участь у голосуванні
| З них, не підтримали жодної кандидатури
|
| 65,0
| 15,7
|
| 52,0
| 14,6
|
| 78,0
| 18,0
|
| 62,0
| 14,8
|
| 41,0
| 12,1
|
| 69,0
| 16,1
|
| 54,0
| 13,8
|
| 85,0
| 16,7
|
| 66,0
| 15,5
|
| 70,0
| 15,8
|
| 80,0
| 17,9
|
| 71,0
| 16,4
|
| 45,0
| 12,8
|
| 64,0
| 15,0
|
| 57,0
| 14,2
|
| 72,0
| 16,5
|
| 67,0
| 15,9
|
| 88,0
| 18,5
|
| 81,0
| 17,6
|
| 73,0
| 16,4
|
| 92,0
| 18,2
|
| 74,0
| 16,0
|
| 48,0
| 13,0
|
| 96,0
| 19,1
|
| 59,0
| 16,5
|
| 75,0
| 16,3
|
| 68,0
| 16,2
|
| 101,0
| 19,6
|
| 83,0
| 16,7
|
| 76,0
| 17,2
| За вихідними даними побудуйте статистичний ряд розподілу виборчих дільниць за кількістю виборців, що не підтримали жодного кандидата. Побудуйте графік розподілу.
Розв’язок:Інтервал значення ознаки окреслює кількісні межі груп. Величина інтервалу вказує різницю між максимальним та мінімальним значенням ознаки в кожній групі (мінімально та максимально допустимими значеннями). Ці межі відділяють одну групу від іншої. Для групування одиниць сукупності, де значення групувальної ознаки (Х) розподілено відносно рівномірно, без помітних стрибків, застосовуються рівні інтервали. Ширину інтервалу (h) можна розрахувати так: h=(Xmax–Xmin):k,
де Xmax, Xmin – найбільше та найменше значення ознаки, k – число груп. В нашому випадку k = 5. Групувальною ознакою є кількість осіб, що не підтримали жодної кандидатури (голосували проти всіх): Xmax = 19,6 тис. осіб; Xmin = 12,1 тис. осіб.;
h = (19,6–12,1):5=1,5. Вихідні дані мають таку ж точність (один знак після коми), тому не заокруглюємо величину інтервалу. Обчислюємо верхні межі груп:
№ групи
| Верхня межа групи
| Обчислення
|
| 13,6
| 12,1+ 1,5
|
| 15,1
| 13,6 + 1,5
|
| 16,6
| 15,1 + 1,5
|
| 18,1
| 16,6 + 1,5
|
| 19,6
| 18,1 + 1,5
| В результаті отримаємо інтервали для значень ознаки „кількість осіб, що не підтримали жодної кандидатури”, тис. осіб:
№ групи
|
|
|
|
|
| Інтервал
| 12,1 – 13,6
| 13,6 – 15,1
| 15,1 – 16,6
| 16,6 – 18,1
| 18,1 – 19,6
| Статистичний ряд розподілу дозволяє характеризувати склад досліджуваного явища, судити про однорідність сукупності, закономірності розподілу, межі варіації одиниць сукупності. Доповнений іншими, результативними ознаками, дозволяє провести дослідження взаємозв’язків.
В нашому випадку статистичний ряд розподілу виборчих дільниць за кількістю осіб, що не підтримали жодної кандидатури, є інтервальним варіаційним рядом розподілу.
Для впорядкування первинного ряду проведемо його ранжування, тобто розташуємо всі варіанти за зростанням:<12,1; 12,8; 13,0>; <13,8; 14,2; 14,6; 14,8; 15,0>; <15.5; 15,7; 15,8; 15,9; 16,0; 16,1; 16,2; 16,3; 16,4; 16,4; 16,5; 16,5>; <16,7; 16,7; 17,2; 17,6; 17,9; 18,0>; <18,2; 18,5; 19,1; 19,6>
Видно, що в кожному інтервалі частота повтору варіантів (f) різна. Оформимо ряд розподілу у вигляді таблиці:
Х
| 12,1 – 13,6
| 13,6 – 15,1
| 15,1 – 16,6
| 16,6 – 18,1
| 18,1 – 19,6
| ¦
|
|
|
|
|
|
|
|
|
|
|
|
Для наочності представимо отриманий статистичний ряд розподілу графічно:
Наведемо результат групування в таблиці, де вкажемо, також ще одну ознаку з вихідних даних спостереження - кількість виборців, що взяли участь у голосуванні. Значення цієї ознаки в кожній групі представлені в сумарному вигляді і в середньому на одну дільницю:
Кількість виборців, що не підтримали жодної кандидатури
| Кількість виборчих дільниць, ¦
| Кількість виборців, що взяли участь у голосуванні
| Разом
| В середньому на одну дільницю
| 12.1 - 13.6
|
|
|
| 13.6 - 15.1
|
|
|
| 15.1 - 16.6
|
|
|
| 16.6 - 18.1
|
|
|
| 18.1 - 19.6
|
|
|
| Разом:
|
| | |
Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...
|
Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...
|
Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...
|
Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...
|
ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...
Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...
Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реакций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...
|
Броматометрия и бромометрия Броматометрический метод основан на окислении восстановителей броматом калия в кислой среде...
Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...
Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод исследования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом растворе...
|
|