Приклад. Відомо наступні дані про активність виборців у одній із областей на виборах президента України у 1999 р
Відомо наступні дані про активність виборців у одній із областей на виборах президента України у 1999 р., тис. чоловік:
| № терито-ріальної виборчої дільниці
| Кількість виборців, що взяли участь у голосуванні
| З них, не підтримали жодної кандидатури
| № терито-ріальної виборчої дільниці
| Кількість виборців, що взяли участь у голосуванні
| З них, не підтримали жодної кандидатури
| |
| 65,0
| 15,7
|
| 52,0
| 14,6
| |
| 78,0
| 18,0
|
| 62,0
| 14,8
| |
| 41,0
| 12,1
|
| 69,0
| 16,1
| |
| 54,0
| 13,8
|
| 85,0
| 16,7
| |
| 66,0
| 15,5
|
| 70,0
| 15,8
| |
| 80,0
| 17,9
|
| 71,0
| 16,4
| |
| 45,0
| 12,8
|
| 64,0
| 15,0
| |
| 57,0
| 14,2
|
| 72,0
| 16,5
| |
| 67,0
| 15,9
|
| 88,0
| 18,5
| |
| 81,0
| 17,6
|
| 73,0
| 16,4
| |
| 92,0
| 18,2
|
| 74,0
| 16,0
| |
| 48,0
| 13,0
|
| 96,0
| 19,1
| |
| 59,0
| 16,5
|
| 75,0
| 16,3
| |
| 68,0
| 16,2
|
| 101,0
| 19,6
| |
| 83,0
| 16,7
|
| 76,0
| 17,2
| За вихідними даними побудуйте статистичний ряд розподілу виборчих дільниць за кількістю виборців, що не підтримали жодного кандидата. Побудуйте графік розподілу.
Розв’язок:Інтервал значення ознаки окреслює кількісні межі груп. Величина інтервалу вказує різницю між максимальним та мінімальним значенням ознаки в кожній групі (мінімально та максимально допустимими значеннями). Ці межі відділяють одну групу від іншої. Для групування одиниць сукупності, де значення групувальної ознаки (Х) розподілено відносно рівномірно, без помітних стрибків, застосовуються рівні інтервали. Ширину інтервалу (h) можна розрахувати так: h=(Xmax–Xmin):k,
де Xmax, Xmin – найбільше та найменше значення ознаки, k – число груп. В нашому випадку k = 5. Групувальною ознакою є кількість осіб, що не підтримали жодної кандидатури (голосували проти всіх): Xmax = 19,6 тис. осіб; Xmin = 12,1 тис. осіб.;
h = (19,6–12,1):5=1,5. Вихідні дані мають таку ж точність (один знак після коми), тому не заокруглюємо величину інтервалу. Обчислюємо верхні межі груп:
| № групи
| Верхня межа групи
| Обчислення
| |
| 13,6
| 12,1+ 1,5
| |
| 15,1
| 13,6 + 1,5
| |
| 16,6
| 15,1 + 1,5
| |
| 18,1
| 16,6 + 1,5
| |
| 19,6
| 18,1 + 1,5
| В результаті отримаємо інтервали для значень ознаки „кількість осіб, що не підтримали жодної кандидатури”, тис. осіб:
| № групи
|
|
|
|
|
| | Інтервал
| 12,1 – 13,6
| 13,6 – 15,1
| 15,1 – 16,6
| 16,6 – 18,1
| 18,1 – 19,6
| Статистичний ряд розподілу дозволяє характеризувати склад досліджуваного явища, судити про однорідність сукупності, закономірності розподілу, межі варіації одиниць сукупності. Доповнений іншими, результативними ознаками, дозволяє провести дослідження взаємозв’язків.
В нашому випадку статистичний ряд розподілу виборчих дільниць за кількістю осіб, що не підтримали жодної кандидатури, є інтервальним варіаційним рядом розподілу.
Для впорядкування первинного ряду проведемо його ранжування, тобто розташуємо всі варіанти за зростанням:<12,1; 12,8; 13,0>; <13,8; 14,2; 14,6; 14,8; 15,0>; <15.5; 15,7; 15,8; 15,9; 16,0; 16,1; 16,2; 16,3; 16,4; 16,4; 16,5; 16,5>; <16,7; 16,7; 17,2; 17,6; 17,9; 18,0>; <18,2; 18,5; 19,1; 19,6>
Видно, що в кожному інтервалі частота повтору варіантів (f) різна. Оформимо ряд розподілу у вигляді таблиці:
| Х
| 12,1 – 13,6
| 13,6 – 15,1
| 15,1 – 16,6
| 16,6 – 18,1
| 18,1 – 19,6
| | ¦
|
|
|
|
|
| |
|
|
|
|
|
|
Для наочності представимо отриманий статистичний ряд розподілу графічно:
Наведемо результат групування в таблиці, де вкажемо, також ще одну ознаку з вихідних даних спостереження - кількість виборців, що взяли участь у голосуванні. Значення цієї ознаки в кожній групі представлені в сумарному вигляді і в середньому на одну дільницю:
| Кількість виборців, що не підтримали жодної кандидатури
| Кількість виборчих дільниць, ¦
| Кількість виборців, що взяли участь у голосуванні
| | Разом
| В середньому на одну дільницю
| | 12.1 - 13.6
|
|
|
| | 13.6 - 15.1
|
|
|
| | 15.1 - 16.6
|
|
|
| | 16.6 - 18.1
|
|
|
| | 18.1 - 19.6
|
|
|
| | Разом:
|
| | |
Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...
|
Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...
|
Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...
|
Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...
|
Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...
Методы анализа финансово-хозяйственной деятельности предприятия
Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...
Образование соседних чисел Фрагмент:
Программная задача: показать образование числа 4 и числа 3 друг из друга...
|
Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри:
Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...
Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...
Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы:
1) первичные...
|
|