Приклад. Відомо наступні дані про активність виборців у одній із областей на виборах президента України у 1999 р
Відомо наступні дані про активність виборців у одній із областей на виборах президента України у 1999 р., тис. чоловік:
| № терито-ріальної виборчої дільниці
| Кількість виборців, що взяли участь у голосуванні
| З них, не підтримали жодної кандидатури
| № терито-ріальної виборчої дільниці
| Кількість виборців, що взяли участь у голосуванні
| З них, не підтримали жодної кандидатури
| |
| 65,0
| 15,7
|
| 52,0
| 14,6
| |
| 78,0
| 18,0
|
| 62,0
| 14,8
| |
| 41,0
| 12,1
|
| 69,0
| 16,1
| |
| 54,0
| 13,8
|
| 85,0
| 16,7
| |
| 66,0
| 15,5
|
| 70,0
| 15,8
| |
| 80,0
| 17,9
|
| 71,0
| 16,4
| |
| 45,0
| 12,8
|
| 64,0
| 15,0
| |
| 57,0
| 14,2
|
| 72,0
| 16,5
| |
| 67,0
| 15,9
|
| 88,0
| 18,5
| |
| 81,0
| 17,6
|
| 73,0
| 16,4
| |
| 92,0
| 18,2
|
| 74,0
| 16,0
| |
| 48,0
| 13,0
|
| 96,0
| 19,1
| |
| 59,0
| 16,5
|
| 75,0
| 16,3
| |
| 68,0
| 16,2
|
| 101,0
| 19,6
| |
| 83,0
| 16,7
|
| 76,0
| 17,2
| За вихідними даними побудуйте статистичний ряд розподілу виборчих дільниць за кількістю виборців, що не підтримали жодного кандидата. Побудуйте графік розподілу.
Розв’язок:Інтервал значення ознаки окреслює кількісні межі груп. Величина інтервалу вказує різницю між максимальним та мінімальним значенням ознаки в кожній групі (мінімально та максимально допустимими значеннями). Ці межі відділяють одну групу від іншої. Для групування одиниць сукупності, де значення групувальної ознаки (Х) розподілено відносно рівномірно, без помітних стрибків, застосовуються рівні інтервали. Ширину інтервалу (h) можна розрахувати так: h=(Xmax–Xmin):k,
де Xmax, Xmin – найбільше та найменше значення ознаки, k – число груп. В нашому випадку k = 5. Групувальною ознакою є кількість осіб, що не підтримали жодної кандидатури (голосували проти всіх): Xmax = 19,6 тис. осіб; Xmin = 12,1 тис. осіб.;
h = (19,6–12,1):5=1,5. Вихідні дані мають таку ж точність (один знак після коми), тому не заокруглюємо величину інтервалу. Обчислюємо верхні межі груп:
| № групи
| Верхня межа групи
| Обчислення
| |
| 13,6
| 12,1+ 1,5
| |
| 15,1
| 13,6 + 1,5
| |
| 16,6
| 15,1 + 1,5
| |
| 18,1
| 16,6 + 1,5
| |
| 19,6
| 18,1 + 1,5
| В результаті отримаємо інтервали для значень ознаки „кількість осіб, що не підтримали жодної кандидатури”, тис. осіб:
| № групи
|
|
|
|
|
| | Інтервал
| 12,1 – 13,6
| 13,6 – 15,1
| 15,1 – 16,6
| 16,6 – 18,1
| 18,1 – 19,6
| Статистичний ряд розподілу дозволяє характеризувати склад досліджуваного явища, судити про однорідність сукупності, закономірності розподілу, межі варіації одиниць сукупності. Доповнений іншими, результативними ознаками, дозволяє провести дослідження взаємозв’язків.
В нашому випадку статистичний ряд розподілу виборчих дільниць за кількістю осіб, що не підтримали жодної кандидатури, є інтервальним варіаційним рядом розподілу.
Для впорядкування первинного ряду проведемо його ранжування, тобто розташуємо всі варіанти за зростанням:<12,1; 12,8; 13,0>; <13,8; 14,2; 14,6; 14,8; 15,0>; <15.5; 15,7; 15,8; 15,9; 16,0; 16,1; 16,2; 16,3; 16,4; 16,4; 16,5; 16,5>; <16,7; 16,7; 17,2; 17,6; 17,9; 18,0>; <18,2; 18,5; 19,1; 19,6>
Видно, що в кожному інтервалі частота повтору варіантів (f) різна. Оформимо ряд розподілу у вигляді таблиці:
| Х
| 12,1 – 13,6
| 13,6 – 15,1
| 15,1 – 16,6
| 16,6 – 18,1
| 18,1 – 19,6
| | ¦
|
|
|
|
|
| |
|
|
|
|
|
|
Для наочності представимо отриманий статистичний ряд розподілу графічно:
Наведемо результат групування в таблиці, де вкажемо, також ще одну ознаку з вихідних даних спостереження - кількість виборців, що взяли участь у голосуванні. Значення цієї ознаки в кожній групі представлені в сумарному вигляді і в середньому на одну дільницю:
| Кількість виборців, що не підтримали жодної кандидатури
| Кількість виборчих дільниць, ¦
| Кількість виборців, що взяли участь у голосуванні
| | Разом
| В середньому на одну дільницю
| | 12.1 - 13.6
|
|
|
| | 13.6 - 15.1
|
|
|
| | 15.1 - 16.6
|
|
|
| | 16.6 - 18.1
|
|
|
| | 18.1 - 19.6
|
|
|
| | Разом:
|
| | |
Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...
|
Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...
|
Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...
|
Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...
|
Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом определения суточного расхода энергии...
ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...
Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2
Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК.
Решение. Подставим данные задачи в уравнение закона разбавления
К = a2См/(1 –a) =...
|
Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...
ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, новогаленовые препараты, жидкие органопрепараты и жидкие экстракты, а также порошки и таблетки для имплантации...
Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...
|
|