Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение. 1) Областью существования функции является весь бесконечный интервал (–¥, ¥)





1) Областью существования функции является весь бесконечный интервал (–¥, ¥).

2) Находим : .

3) Решаем уравнение т.е. ;

х (х 2 – 2 х – 3) = 0 Þ х 1 = 0, х 2 = 3, х 3 = –1.

4) Располагаем критические точки в порядке возрастания абсцисс: –1; 0; 3.

5) Рассмотрим интервалы .

Выберем внутри каждого из этих интервалов произвольную точку

и определим в этой точке знак первой производной. В интервале возьмем, например, точку х = –2;

 
 

. В интервале (–1, 0) возьмем точку , ; в интервале (0, 3) возьмем точку
х = 1, ; в интервале (3, ¥) возьмем точку х = 4, . Точку в интервале можно брать любую.

В критической точке х = –1 имеет место минимум, в точке
x = 0 – максимум, в точке х = 3 – минимум.

Найдем экстремальные значения функции:

, , .

Определим наименьшее и наибольшее значение функции на отрезке [–2, 4]. Этот отрезок содержит внутри себя все критические точки. Так как значения функции в критических точках уже вычислены, остается вычислить значения функции на концах отрезка:

; .

Сравнивая все вычисления, видим, что наибольшего значения функция достигает на левом конце отрезка при х = –2, а наименьшего – в критической точке х = 3.

 

3.8.7. Направление выпуклости кривой. Точки перегиба

Если в некотором интервале кривая расположена ниже любой своей касательной, то она называется выпуклой вверх, а если она расположена выше любой своей касательной, то называется выпуклой вниз в этом интервале.

 
 

Точкой перегиба называется точка на кривой, где меняется направление ее выпуклости.

Рис. 23

 

На рис.23 в интервале (а, b) кривая выпукла вверх, в интервале (b, с) она выпукла вниз, а точка B есть точка перегиба.

Направление выпуклости кривой характеризуется знаком второй производной : если в некотором интервале , то кривая выпукла вниз, а если , то кривая выпукла вверх в этом интервале.

Абсциссы точек перегиба кривой можно найти по следующему правилу:

1) найдем и точки x, в которых или не существует;

2) определим знак слева и справа от каждой из этих точек. Исследуемая точка x будет абсциссой точки перегиба, если по разные стороны от нее имеет разные знаки.

Пример 4. Определить направление выпуклости и точки перегиба кривой .







Дата добавления: 2014-11-10; просмотров: 678. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия