Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение. 1) Областью существования функции является весь бесконечный интервал (–¥, ¥)





1) Областью существования функции является весь бесконечный интервал (–¥, ¥).

2) Находим : .

3) Решаем уравнение т.е. ;

х (х 2 – 2 х – 3) = 0 Þ х 1 = 0, х 2 = 3, х 3 = –1.

4) Располагаем критические точки в порядке возрастания абсцисс: –1; 0; 3.

5) Рассмотрим интервалы .

Выберем внутри каждого из этих интервалов произвольную точку

и определим в этой точке знак первой производной. В интервале возьмем, например, точку х = –2;

 
 

. В интервале (–1, 0) возьмем точку , ; в интервале (0, 3) возьмем точку
х = 1, ; в интервале (3, ¥) возьмем точку х = 4, . Точку в интервале можно брать любую.

В критической точке х = –1 имеет место минимум, в точке
x = 0 – максимум, в точке х = 3 – минимум.

Найдем экстремальные значения функции:

, , .

Определим наименьшее и наибольшее значение функции на отрезке [–2, 4]. Этот отрезок содержит внутри себя все критические точки. Так как значения функции в критических точках уже вычислены, остается вычислить значения функции на концах отрезка:

; .

Сравнивая все вычисления, видим, что наибольшего значения функция достигает на левом конце отрезка при х = –2, а наименьшего – в критической точке х = 3.

 

3.8.7. Направление выпуклости кривой. Точки перегиба

Если в некотором интервале кривая расположена ниже любой своей касательной, то она называется выпуклой вверх, а если она расположена выше любой своей касательной, то называется выпуклой вниз в этом интервале.

 
 

Точкой перегиба называется точка на кривой, где меняется направление ее выпуклости.

Рис. 23

 

На рис.23 в интервале (а, b) кривая выпукла вверх, в интервале (b, с) она выпукла вниз, а точка B есть точка перегиба.

Направление выпуклости кривой характеризуется знаком второй производной : если в некотором интервале , то кривая выпукла вниз, а если , то кривая выпукла вверх в этом интервале.

Абсциссы точек перегиба кривой можно найти по следующему правилу:

1) найдем и точки x, в которых или не существует;

2) определим знак слева и справа от каждой из этих точек. Исследуемая точка x будет абсциссой точки перегиба, если по разные стороны от нее имеет разные знаки.

Пример 4. Определить направление выпуклости и точки перегиба кривой .







Дата добавления: 2014-11-10; просмотров: 678. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия